Laws of Indices

What are Indices?

- Indices provide a way of writing numbers in a more convenient form
- Indices is the plural of index
- An index is often referred to as a power

For example

$$
5 \times 5 \times 5=5^{3}
$$

$$
\begin{array}{r}
2 \times 2 \times 2 \times 2=2^{4} \\
7 \times 7 \times 7 \times 7 \times 7
\end{array}=7^{5} \quad \begin{aligned}
& 5 \text { is the INDEX }
\end{aligned}
$$

$7^{5} \& 2^{4}$ are numbers in INDEX FORM

Combining numbers

$$
\begin{gathered}
5 \times 5 \times 5 \times 2 \times 2 \times 2 \times 2 \\
=5^{3} \times 2^{4}
\end{gathered}
$$

We can not write this any more simply!

Can ONLY do that if BASE NUMBERS are the same

Rule 1 : Multiplication

$2^{6} \times 2^{4}=2^{10}$
$2^{4} \times 2^{2}=2^{6}$
$3^{5} \times 3^{7}=3^{12}$

General Rule

$a^{m} \times a^{n}=a^{m+n}$

Rule 2 : Division

$$
\begin{aligned}
& 2^{6} \div 2^{4}=3^{2} \\
& 2^{5} \div 2^{2}=2^{3} \\
& 3^{5} \div 3^{7}=3^{-2}
\end{aligned}
$$

General Rule

$$
a^{m} \div a^{n}=a^{m-n}
$$

Rule 3 : Brackets

$$
\begin{aligned}
& \left(2^{6}\right)^{2}=2^{6} \times 2^{6}=2^{12} \\
& \left(3^{5}\right)^{3}=3^{5} \times 3^{5} \times 3^{5}=3^{15}
\end{aligned}
$$

General Rule

$$
\left(\mathrm{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{a}^{\mathrm{m} \times \mathrm{n}}
$$

Rule 4 : Index of 0

How could you get an answer of 3^{0} ?

$$
\begin{array}{ll}
3^{5} \div 3^{5}=3^{5-5}=3^{0} \\
3^{0}=1 \quad \text { General Rule } \\
& \quad a^{0}=1
\end{array}
$$

$$
\begin{aligned}
& \text { Putting them together? } \\
& \frac{2^{6} \times 2^{4}}{2^{3}}=\frac{2^{10}}{2^{3}}=2^{7} \\
& \frac{3^{5} \times 3^{7}}{3^{4}}=\frac{3^{12}}{3^{4}}=3^{8} \\
& \frac{2^{5} \times 2^{3}}{2^{4} \times 2^{2}}=\frac{2^{8}}{2^{6}}=2^{2}
\end{aligned}
$$

Works with algebra too!

$$
\begin{aligned}
a^{6} \times a^{4} & =a^{10} \\
b^{5} \times b^{7} & =b^{12} \\
\frac{c^{5} \times c^{3}}{c^{4}} & =\frac{c^{8}}{c^{4}}=c^{4} \\
\frac{a^{5} \times a^{3}}{a^{4} \times a^{6}} & =\frac{a^{8}}{a^{10}}=a^{-2}
\end{aligned}
$$

..and a mixture...

$2 a^{3} \times 3 a^{4}=2 \times 3 \times a^{3} \times a^{4}=6 a^{7}$
$8 a^{6} \div 4 a^{4}=(8 \div 4) \times\left(a^{6} \div a^{4}\right)=2 a^{2}$ $28 a^{62}$
$4 a^{4}$

