Complex Numbers

What ARE they?

What is a complex number?

- We know that $\sqrt{ } 4=2, \sqrt{ } 25=5, \sqrt{ } 100=10$ But what is the $\sqrt{ }-4$? How can a number multiplied by itself give a negative number? That's impossible!

So...... $\sqrt{ }-4$ is not a real number.
Numbers such as $\sqrt{ }-1, \sqrt{ }-4$ and $\sqrt{ }-25$ are called imaginary numbers

Imaginary numbers

- $i=\sqrt{ }-1$ and $i^{2}=-1$
- Now we can write imaginary numbers e.g. $\checkmark 9$ in a new form using the symbol i for $\checkmark-1$
- $\sqrt{ }-9=\sqrt{ } 9 . ~ \sqrt{ }-1=3 i$
- $\sqrt{ }-25=\sqrt{ } 5 . \sqrt{ }-1=5 i$
- $\sqrt{ }-18=\sqrt{ } 18 \cdot \sqrt{ }-1=\sqrt{ } 9 \cdot \sqrt{ } 2 \cdot i=3 \sqrt{ } 2 i$

Example of a complex number

- A number like $3+4 i$ is called a complex number.
- 3 is called the real part.
- 4 is called the imaginary part.
- A complex number is a number of the form $a+b i$, where $i=\sqrt{ }-1$

Complex numbers cont.

- Take note! The real number 4 may be written in the form $4+0 i$ (the real part $=4$ and the imaginary part = 0)
- The imaginary number -3i may be written in the form $0-3 i$ (the real part $=0$ and the imaginary part = -3)
- The capital letter C is used to represent the set of complex numbers.
- The letter z is generally used to represent a complex number, e.g. $z_{1}=3-4 i, \quad z_{2}=-5+6 i$

Adding and subtracting complex numbers

- To add or subtract two complex numbers, add or subtract the real parts and the imaginary parts separately, for example:
$(3+2 i)+(4-3 i)$
$=3+2 i+4-3 i$ (add the real numbers and then add the imaginary numbers)

$$
=7-i
$$

Removing the brackets

- We can simplify $5(3-4 i)$ by multiplying each term in the brackets by 5 .
- = 15 - $20 i$

An example

- If $z_{1}=1+2 i$ and $z_{2}=5-2 i$, express in the terms a + bi:

$$
\begin{aligned}
& z_{1}+z_{2} \\
= & (1+2 i)+(5-2 i) \\
= & 1+2 i+5-2 i \\
= & 6+0 i
\end{aligned}
$$

Multiplying complex numbers

- We multiply complex numbers in the same way we multiply algebraic expressions, but we replace the i^{2} with -1 .
- Example: $i(4+2 i)$

$$
\begin{aligned}
& =4 i+2 i^{2} \\
& =4 i+2(-1) \\
& =4 i-2
\end{aligned}
$$

Example of multiplying complex numbers

$$
\begin{aligned}
&(4+i)(5-2 i) \\
&= 4(5-2 i)+i(5-2 i) \\
&=20-8 i+5 i-2 i^{2} \\
&=20+3 i-2(-1)\left(\text { Replace } i^{2} \text { with }-1\right) \\
&=20+3 i+2 \\
&=22+3 i
\end{aligned}
$$

Dividing complex numbers

- If $z=a+b i$ is a complex number, then $a-b i$ is called the complex conjugate of z, or simply the conjugate of z.
- It sounds complicated, but just change the sign of the imaginary number to get the conjugate!
- Examples: The conjugate of $3-4 i$ is $3+4 i$ and the conjugate of $-2+5 i$ is $-2-5 i$. That's simple!
- We write the conjugate of z like this: \bar{z}

Dividing complex numbers cont.

- Express in the form a + bi:

4-3i
$3+2 i$

- To express this in this form, we multiply above and below by the conjugate bottom number.

$$
\frac{4-3 i}{3+2 i} \times \frac{3-2 i}{3-2 i}
$$

Example cont.

$$
\begin{aligned}
& =\frac{(4-3 i)(3-2 i)}{(3+2 i)(3-2 i)} \\
& =\frac{4(3-2 i)-3 i(3-2 i)}{3(3-2 i)+2 i(3-2 i)} \\
& =\frac{12-8 i-9 i+6(-1)}{9-6 i+6 i-4(-1)} \\
& =\frac{6+17 i}{13}=\frac{6}{13}+\frac{17}{13}
\end{aligned}
$$

Simples!

